Functional Significance of SRJ Domain Mutations in CITED2
نویسندگان
چکیده
CITED2 is a transcriptional co-activator with 3 conserved domains shared with other CITED family members and a unique Serine-Glycine Rich Junction (SRJ) that is highly conserved in placental mammals. Loss of Cited2 in mice results in cardiac and aortic arch malformations, adrenal agenesis, neural tube and placental defects, and partially penetrant defects in left-right patterning. By screening 1126 sporadic congenital heart disease (CHD) cases and 1227 controls, we identified 19 variants, including 5 unique non-synonymous sequence variations (N62S, R92G, T166N, G180-A187del and A187T) in patients. Many of the CHD-specific variants identified in this and previous studies cluster in the SRJ domain. Transient transfection experiments show that T166N mutation impairs TFAP2 co-activation function and ES cell proliferation. We find that CITED2 is phosphorylated by MAPK1 in vitro at T166, and that MAPK1 activation enhances the coactivation function of CITED2 but not of CITED2-T166N. In order to investigate the functional significance in vivo, we generated a T166N mutation of mouse Cited2. We also used PhiC31 integrase-mediated cassette exchange to generate a Cited2 knock-in allele replacing the mouse Cited2 coding sequence with human CITED2 and with a mutant form deleting the entire SRJ domain. Mouse embryos expressing only CITED2-T166N or CITED2-SRJ-deleted alleles surprisingly show no morphological abnormalities, and mice are viable and fertile. These results indicate that the SRJ domain is dispensable for these functions of CITED2 in mice and that mutations clustering in the SRJ region are unlikely to be the sole cause of the malformations observed in patients with sporadic CHD. Our results also suggest that coding sequence mutations observed in case-control studies need validation using in vivo models and that predictions based on structural conservation and in vitro functional assays, or even in vivo global loss of function models, may be insufficient.
منابع مشابه
Identification and functional analysis of CITED2 mutations in patients with congenital heart defects.
Recent reports have demonstrated that mice lacking the transcription factor Cited2 die in utero showing various cardiac malformations. We present for the first time functionally relevant mutations of CITED2 in patients with congenital heart defects (CHDs). CITED2 encodes a CREBBP/EP300 interacting transcriptional modulator of HIF1A and TFAP2. To study the potential impact of sequence variations...
متن کاملVariations of CITED2 Are Associated with Congenital Heart Disease (CHD) in Chinese Population
CITED2 was identified as a cardiac transcription factor which is essential to the heart development. Cited2-deficient mice showed cardiac malformations, adrenal agenesis and neural crest defects. To explore the potential impact of mutations in CITED2 on congenital heart disease (CHD) in humans, we screened the coding region of CITED2 in a total of 700 Chinese people with congenital heart diseas...
متن کاملCITED2 in breast carcinoma as a potent prognostic predictor associated with proliferation, migration and chemoresistance
CITED2 (Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2) is a member of the CITED family and is involved in various cellular functions during development and differentiation. Mounting evidence suggests the importance of CITED in the progression of human malignancies, but the significance of CITED2 protein has not yet been examined in breast carcinoma. Therefore...
متن کاملFunctional Investigation of the Novel BRCA1variant (Glu1661Gly) byComputationalTools andYeastTranscription Activation Assay
Introduction: Mutations in the BRCA1 gene are major risk factors for breast and ovarian cancers. However, the relationship between some BRCA1 mutations and cancer risk remains largely unknown. Cancer risk predictions could be improved by evaluation of the impairment degree in the BRCA1 functions due to a specific mutation. This study aimed to assess the functional effect of a novel variant (Glu...
متن کاملFunctional Investigation of the Novel BRCA1variant (Glu1661Gly) byComputationalTools andYeastTranscription Activation Assay
Introduction: Mutations in the BRCA1 gene are major risk factors for breast and ovarian cancers. However, the relationship between some BRCA1 mutations and cancer risk remains largely unknown. Cancer risk predictions could be improved by evaluation of the impairment degree in the BRCA1 functions due to a specific mutation. This study aimed to assess the functional effect of a novel variant (Glu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012